Weak Amenability of Hyperbolic Groups

نویسنده

  • NARUTAKA OZAWA
چکیده

We prove that hyperbolic groups are weakly amenable. This partially extends the result of Cowling and Haagerup showing that lattices in simple Lie groups of real rank one are weakly amenable. We take a combinatorial approach in the spirit of Haagerup and prove that for the word length metric d on a hyperbolic group, the Schur multipliers associated with r have uniformly bounded norms for 0 < r < 1. We then combine this with a Bożejko-Picardello type inequality to obtain weak amenability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak amenability of (2N)-th dual of a Banach algebra

In this paper by using some conditions, we show that the weak amenability of (2n)-th dual of a Banach algebra A for some $ngeq 1$ implies the weak amenability of A.

متن کامل

Weak and $(-1)$-weak amenability of second dual of Banach algebras

For a Banach algebra $A$, $A''$ is $(-1)$-Weakly amenable if $A'$ is a Banach $A''$-bimodule and $H^1(A'',A')={0}$. In this paper, among other things,  we study the relationships between the $(-1)$-Weakly amenability of $A''$ and the weak amenability of $A''$ or $A$. Moreover, we show that the second dual of every $C^ast$-algebra is $(-1)$-Weakly amenable.

متن کامل

Boundary amenability of hyperbolic spaces

It is well-known that a Kleinian group is amenable if and only if it is elementary. We establish an analogous property for equivalence relations and foliations with Gromov hyperbolic leaves: they are amenable if and only if they are elementary in the sense that one can assign (in a measurable way) to any leaf a finite subset of its hyperbolic boundary (as in the group case, such subsets cannot ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008